Use Cases
1. Develop your own RL Task
-
Robot Environment
Jetbot_robot_env.py
-
The thing you need to do in this file:
- Open Gazebo
- Determine how to control
- Determine which sensor to use
- Set virtual method for Task Environment
- Note: All staff you need to change in the code is commented by
TODO
in code.
-
Details
-
Init robot envrionment from gazebo environment.
python class JetbotRobotEnv(robot_gazebo_env.RobotGazeboEnv):
-
Choose your own controller
python self.controllers_list = ['jetbot_joint_state_controller', 'jetbot_velocity_controller' ]
Note:
use this to get controller:
$ rosservice call /jetbot_0/controller_manager/list_controllers
* Change the namespacepython self.robot_name_space = "jetbot_0"
Note:
use this to get the namespace
$ rostopic list | grep controller
-
-
Change Actions
2. Start training
roslaunch jetbot_rl start_training.launch
3. Plot Training Result
Run rqt_multipolt
rosrun rqt_multiplot rqt_multiplot
Choose configure -> choose topic [openai/reward] -> choose start plot